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Flow proper t ies  within a continuous d.c. magnetoplasmadynamic engine 
have been invest igated by measuring the  ion sa tura t ion  current  t o  a planar  
Langmuir probe as a function of probe or ien ta t ion  and posi t ion.  
s w i r l ,  i t s  h e l i c a l  pitch,  and i t s  degree of azimuthal uniformity are e a s i l y  
ident i f ied .  S t r ik ing  differences occur i f  t he  th rus t e r  has an axisymmetric 
e l e c t r i c  current  d i s t r i b u t i o n  or a ro ta t ing  current  spoke. The Langmuir 
probe appears t o  de t ec t  ro ta t ing  spokes almost as w e l l  as do Rogowski c o i l s  
wrapped around t h e  th rus t e r  anode segments. Transi t ion thresholds from 
the spoke t o  no-spoke modes, both v i s i b l y  stable, are observed, as moderate 
changes of  10 t o  20% are made i n  e i t h e r  a r c  current,  mass flow or magnetic 
f i e ld .  Thermal e f f ic iences  are s l i g h t l y  better on the  spoke side of  t he  
t r a n s i t i o n  threshold.  
flow change l i t t l e  at  the onset of t he  spoke. 

Plasma 

The a r c  voltage and the  average azimuthal plasma 

The a r c  parameters were 100 t o  600 amp, 10 t o  40 mg/sec of argon, and 
bias magnetic fields up t o  2700 gauss. 
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I. INTROMTCTION 

Magnetoplasmadynamic (MPD) a r c  engines‘’) usual ly  have coaxial, axisym- 
metric e lec t rodes  between which propel lant  is accelerated.  Conceptually, 
t he  e l e c t r i c  current  d i s t r i b u t i o n  between t h e  electrodes can vary i n  a z i -  
muthal uniformity between t h e  two extremes of e i t h e r  an axisymmetric dist- 
r ibu t ion  or a loca l ized  fi lament c a l l e d  a spoke. Since the t h r u s t e r  per- 
formance may be expected t o  depend upon t h e  e l e c t r i c  cur ren t  d i s t r ibu t ion ,  
it i s  important t o  determine any such correlat ions.  

Recent work has demon trated the  exis tence of t h e  spo 
continuously mnning(2,3,47 and pulsed, quasi-steady arcs .  
an extern 1 magnetic f ield w a s  applied and the spoke was observed t o  ro ta te .  
Malliarisrb) has s ince determined tha t ,  i f  e i t h e r  t h e  bias magnetic f ie ld  
i s  weaker than, say 500 gauss, or t h e  a rc  current  is stronger than 1000 amp, 
then a var ie ty  of i nd i r ec t  evidence f o r  t h e  exis tence of t h e  spok 
pears. Theoretical  treatment of  such phenomena has been started. 

The spoke has been measured d i rec t ly(8)  i n  a pulsed MPD device by use 
of small Rogowski loops i n  t h e  discharge. I n  the  same experiments, a 
double planar  Langmuir probe, negatively biased, w a s  used t o  determine the  
ion flux within t h e  device. It w a s  found t h a t  t he  ro t a t ing  current  spoke 
i s  a l so  a ro t a t ing  spoke of plasma, i.e., s p a t i a l  azimuthal nonuniformity 
a l so  e x i s t s  i n  the  plasma flow. 

Our experiments are intended t o  inves t iga te  the  propert ies  of  an 
engine running continuously with o r  without the presence of a spoke. 
parameter region used i s  that one iden t i f i ed  by Malliaris(0) of weak ap- 
p l i ed  magnetic field and moderate a r c  currents.  W e  have found t h a t  t he  
th rus t e r  runs very s tab ly  i n  e i t h e r  a spoke mode or a no-spoke mode. 

The 

Since the engine anode i s  segmented, the measurement of t h e  current  

The plasma flow i s  observed by a small double planar  
t o  each segment i s  a d i rec t ,  s ens i t i ve  ind ica tor  of t h e  presence of t he  
ro ta t ing  spoke.(2) 
Langmuir probe which i s  rap id ly  in se r t ed  within the  t h r u s t e r  and then 
withdrawn t o  avoid physical  damage. 
ca lor imet r ica l ly  by measuring the  temperature rise of  flowing coolant. 

The e lectrode losses are monitored 

The operating conditions of  t h e  engine have been: propellant,  argon; 
mass flow rate, 10 t o  40 mg/sec; a r c  current,  100 t o  600 amp; voltage, 
25 t o  34 v; bias magnetic field, 300 t o  2700 gauss at t h e  cathode t i p .  
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11. APPARATUS 

The engine which is presented by schematic i n  F re 1 and by photograph 
i n  Figure 2 has been described previously i n  detail.  i-W The nozzle e x i t  
radius is  2.5 cm, the th roa t  radius  i s  0.97 cm, and the cathode i s  3.23 cm 
from the  e x i t  plane. Now the magnet has been moved upstream t o  allow the 
radial inser t ion  of  t he  Langmuir probe a t  various a x i a l  posi t ions.  
f ie ld  angle is  20' from the  z axis a t  the outer  radius  o f  the e x i t  plane. 
The a x i a l  gaps i n  the  th ree  segment anode have narrow boron n i t r i d e  spacers 
one of which is  altered t o  accommodate changes i n  the  a x i a l  pos i t ion  of t he  
probe. Each anode segment is  water cooled separately and has a separate  
e l e c t r i c a l  feed from a common bus. The t i m e  dependent 

The 

mponent of the 
current  t o  each segment i s  detected by Rogowski loops. ( 37 

Reference 2 a l so  describes:  t he  construction, ca l ib ra t ion  and use of 
the  Rogowski loops; the magnet; t he  experimental f a c i l i t y ;  and the  standard 
measurements. 
operating tank pressure w a s  near and below one ntorr. 

For the  present experiments, Argon was t h e  propel lant  and the  

Two schematic views of  the  double planar  Langmuir probe are given i n  
Figures 1 and 3. The s h a f t  i s  a two-hole alumina tube, 1.5 mm i n  diameter, 
w i t h  t he  holes fused shut a t  the  shaf t  t i p .  A platinum w i r e ,  0.5 mm i n  
diameter, i s  inser ted  i n  each hole. Away from the  t i p ,  on opposite sides 
of the shaf t ,  two cu t s  are made perpendicular t o  t he  sha f t  axis.  The 
shaft w a l l  and one-half of each w i r e  i s  cu t  away, t o  expose two p a r a l l e l  
plane electrode surfaces flanked a t  each end by  a semi-circle of metal. 
The semi-circles of  w i r e  a t  each end of the cu t s  are covered by g l a s s  
fused t o  the  alumina. 
t rodes 0.5 mm by 1.5 mm i n  s ize .  

The r e s u l t  i s  two p a r a l l e l  plane rectangular e lec-  

Referring t o  Figure 1, the  probe i s  placed within the  th rus t e r  so t h a t  
the  midpoint of  t he  midsection i s  a t  a known radial, r, and ax ia l ,  z, dis- 
tance from the center  po in t  of t he  e x i t  plane. Referring t o  Figure 3, t he  
ion sa tura t ion  current  dens i t i e s  J2 and J3 are separately measured. 
e lectrodes are biased negatively, with respect t o  the  cathode. 

The 

A s  the  angle of rotat ion,  a, of the probe about i t s  own ax i s  i s  changed, 
Jz and J3 w i l l  change, i f  t he  plasma is  flowing. The ion flow angle, say 
a, i s  easy t o  detect ,  f o r  i f  o( = Q ! ~ ,  then Jz = J3 because+of symmetry. Then 
the  d i r ec t ion  and magnitude of t h e  flow i n  the e-z plane, J i o z ,  i s  determined 
from the  difference,  J2-J3, a t  the angles Q! = ol, f 90'. 

The electrodes are made p a r a l l e l  t o  within 2'. The ca l ib ra t ion  of  the 
angle that the  plane of  the electrode surface makes with respect t o  t h e  
th rus t e r  a x i s  i s  a l so  good t o  2'. 
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The Langmuir probe theory is  reviewed b Chen.(lo) It has been d i  - 
cussed i 
Lovberg.rB7 The appl icat ion within a continuously running engine i s  some- 
what d i f fe ren t .  I n  order t o  prevent thermal damage, the  probe i s  quickly 
inserted and withdrawn through a small hole i n  the boron n i t r i d e  spacer. 
The exposure t o  the  plasma var ies  from 5 t o  50 msecs. The mechanism f o r  
doing t h a t  is described i n  the  appendix. Suffice it t o  say t h a t  CY, r, z 
are w e l l  known, with the  se t t i ngs  of t he  first two controlled from outside 
the  vacuum tank. The a x i a l  posit ion,  z, is  changed less frequently, and 
requires breaking vacuum. 

onnection with MPD a rcs  by Brooksr11) and used by Burlock(12T and 

111. EXPERIMENTS 

1. Cathode a t  z = 3.23 cm 

Most of the  experiments were done with the  cathode at  z = 3.23 cm. 
Near the end of t he  contract  the  posi t ion w a s  changed i n  order t o  e f f ec t  
better repea tab i l i ty  of some features  of the  measurements. 

The first data  concerns the  ident i f ica t ion  of t he  th rus t e r  mode. 
Figure 4 gives typ ica l  evidence f o r  two d i s t i n c t l y  d i f f e ren t  modes. 
top row shows the  appearance of a ro ta t ing  current spoke as B, i s  changed 
from g6Og t o  1400g at  the cathode t i p .  
current channel passes from anode segment 9 t o  segment 16 periodical ly  a t  
a frequency of 77 kHz. 
frequency. 
no-spoke and the spoke modes. 

The 

A t  the  l a t te r  strength, a strong 

A t  Bz = 960g, there i s  no such phenomena, a t  any 
For the  purpose of t h i s  report, the  top photographs define the 

The second row i n  Figure 4 i l l u s t r a t e s  the  Langmuir probe data.  The 
electrodes are placed a t  z = 1.6 cm, t h e i r  posi t ion i n  Figure 1, r = 4 mm, 
and CY = Oo, the angular s e t t i ng  most sens i t ive  t o  plasma swirling motion. 
In  both modes, J3-J2 is posit ive,  indicat ing plasma s w i r l  i n  the d i rec t ion  
of the cross product of the  a rc  current  and applied magnetic f i e ld .  In  
the spoke mode, the ion f lux  J3, t o  the probe facing upstream t o  the plasma 
s w i r l ,  is  strongly modulated a t  the spoke frequency. The probe data  and 
segment current data  are taken simultaneously: The oscilloscope sweeps 
have iden t i ca l  t i m e  bases. The peak i n  the ion f lux  J3 occurs as the  elec-  
t r i c  current spoke sweeps pas t  the  probe, indicat ing a s p a t i a l  correlat ion 
between the spoke and the  plasma. 

The t h i r d  row gives J3 and J, on a slower sweep, s t a r t i n g  when the  
probe passes through the  anode in to  the  plasma. 
r( t) ,  var ies  and the  probe i s  i n  the  plasma f o r  8 msecs. 
show t h a t  t he  evidence f o r  e i t h e r  mode is, consistent a t  a l l  r ad i i .  

The probe radial position, 
The photographs 
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A l l  t h e  data i n  Figure 4 change appropriately i f  the  magnetic field 
i s  reversed. The plasma s w i r l  reverses direct ion,  and, i n  t h e  spoke mode, 
the  spoke ro ta t ion  reverses, and the  strong ion flux modulation i s  then 
observed on Jz. With e i t h e r  field direct ion,  if t h e  probe i s  placed on 
axis ,  .r = 0, 
it should be, and i n  the  spoke mode, modulations i n  Jz or  J3, if  any, are 
minor. 
strong modulations a t  the  spoke frequency are observed a l so  i n  the  axial 
component of the  ion f l u ,  again mostly on the  probe facing upstream. 
evidence i n  t h i s  paragraph argues strongly against  any spurious e f f e c t s  
such as e l e c t r o s t a t i c  pick up. 

= Oo, then Ja = J3. That is, there  i s  no s w i r l  on axis, as 

A t  any r, a t  a = f goo, if the  th rus t e r  i s  i n  the  spoke mode, then 

The 

The double planar, negatively biased probe within the  discharge thus 
appears t o  be a sens i t ive  spoke detector .  The probe and the  segment cur- 
r en t  measurements then were used t o  iden t i fy  the t h r u s t e r  mode as operat- 
ing parameters were varied. 

Figure 5 summarizes the  data on th rus t e r  mode regions. A l s o  some data 
points  are given t o  show the  percentage of a r c  power l o s t  t o  the  anode. 
losses  t o  the  cathode were minor. 
according t o  t h i s  scheme: 

The 
The th rus t e r  mode regions are labe l led  

S = w e l l  defined spoke, no f luc tua t ions  

N = no evidence of spoke, no f luc tua t ions  

T = t r ans i t i on  between N and S 

F = f luc tua t ions  

It i s  important t o  note t h a t  the  engine was extremely stable i n  the  N o r  S 
modes. N o  f luc tua t ions  were observed i n  the d.c. values of a rc  current,  
voltage, or j e t  luminosity. The two regions where f luc tua t ions  were some- 
times observed are marked addi t iona l ly  with an F. 

The t r a n s i t i o n  region w a s  found t o  wander along the  B, ax i s  somewhat 
within a three-hour run, and more unpredictably from day t o  day. Always, 
however, the general  pa t te rn  i s  the same as the  one i n  Figure 5. For Ih = 
15 mg/sec, the t r a n s i t i o n  region i s  most frequently nearer 600 t o  700 gauss, 
and f o r  rh = 30 mg/sec, it i s  nearer t o  1500 t o  1600 gauss, a t  the cathode 
t i p .  For a mass flow rate of 25 mg/sec, over many runs, the  t r a n s i t i o n  
region has wandered over almost t h a t  same range. 
extreme ends of the range, are given i n  Figure 6. 
the  gross a rc  parameters were the  same. 

Two examples, a t  the  
Except f o r  the voltage, 

Figure 6 a l s o  i l l u s t r a t e s  t h a t  t he  t r a n s i t i o n  from N t o  S can occur i n  . 
two d i s t i n c t  ways. 
without v i s i b l e  f luc tua t ion  i n  luminosity or d.c. current  or d.c. voltage. 
The data i n  the  T region cannot be c l ea r ly  described as representing e i t h e r  
the  N or t he  S mode. The t rends of power l o s s  and a r c  voltage with B, are 
smooth. 

For the  lower data, the  t r a n s i t i o n  from N t o  S i s  smooth, 
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For t h e  upper data, t h e  t r a n s i t i o n  region i s  one i n  which the  t h r u s t e r  
Alternately,  it is  d e f i n i t e l y  

The luminosity and t h e  d.c. 

Here, there appears t o  be a 

i s  f luc tua t ing  between t h e  N and t h e  S mode. 
i n  one mode and then d e f i n i t e l y  i n  the  other .  
voltage and current  a l l  f luctuate .  
change abrupt ly  across  t h e  t r a n s i t i o n  region. 
c lose assoc ia t ion  between current  d i s t r i b u t i o n  changes and t h e  f luc tua t ions  
and voltage mode changes that have been observed i n  a l l  labora tor ies .  

The t rends  of power loss and a r c  voltage 

The pa t te rns  observed i n  Figures 5 and 6 have a l s o  been found i n  a 
l i k e  th rus t e r  with a s o l i d  anode. For t h a t  case, t h e  probe i s  located j u s t  
outs ide the  exi t  plane. It i s  in t e re s t ing  t o  note that t h e  N t o  S mode 
change i s  t r iggered  by a 10 t o  2% change i n  Bz. 
a mode change as the  mass flow rate is var ied by 16 from 31 t o  28 mg/sec 
i s  given i n  Figure 7. 

An example of data showing 

A t  t he  start of  t h e  program, the main goal  w a s  t o  relate eventual ly  
t h e  plasma proper t ies  within the  discharge t o  t h r u s t  production and t o  
energy lo s ses  t o  the  electrodes,  f o r  e i t h e r  a spoke or no-spoke mode. 
t h i s  end, t he  double Langmuir probe was used t o  measure the  8, z components 
of  the ion f lux  a t  f i f t e e n  poin ts  i n  a p a r t i c u l a r  r -z  plane within t h e  
th rus t e r .  The t h r u s t e r  w a s  i n  a no-spoke mode, and t h e  operating parameters 
were constant. A t  each point,  t he  probe o r i en ta t ion  angle, a, w a s  varied 
from + 90' t o  - 90'. The da ta  from three  poin ts  i s  given i n  Figure 8 where 
J2 and J3 are p lo t t ed  vs 0. The angle a t  which J2 = J3 and through which 
J2 - J3 changes s ign i s  e a s i l y  ident i f ied .  That i s  t h e  s w i r l  angle, cyl, of 
Figure 3, which the  ion f l u x  makes with the  t h r u s t e r  axis. 
probe symmetry,. J2 ( 6 )  should equal iT3 ( -0, 6 =oa - a, and the  l i n e s  through 
the  da ta  are so drawn. A t  01 = - 90 and cc = 0 , t h e  difference J3 - Jz 
gives the  z and 8 components, respectively,  of t h e  ion f lux.  

To 

Because of the  

The method of presenting the map of t he  plasma flow i n  Figure 9 
emphasizss t h e  important t h r u s t e r  features ,  the  ion  flow along the  l i n e  of 
th rus t ,  J i z ,  and t h e  s w i r l  angle, al. Figures 9 and 10 should be read 
together, f o r  t he  lat ter gives  the  magnitude of t he  flow along the  ray Q, 

and a l so  the  random f l u x  perpendicular t o  t h e  ray. One observes r e l a t i v e l y  
l i t t l e  plasma flow a t  t h e  start of t he  cathode cone. I n  f r o n t  of the cathode, 
the  flow increases  and t h e  pa t t e rn  i s  complicated. From the re  downstream, 
the  a x i a l  ion f l u x  in tegra ted  over a cross  sect ion of t he  j e t  continues t o  
increase and the  random currents  continue t o  decrease. A t  t he  downstream 
th roa t  edge, the  flow i s  more uniform. Beyond tha t ,  along a l i n e  a t  a 
constant radius, t he  plasma s w i r l  angle decreases. 

The continuous increase i n  the in tegra ted  axial flux i n  the  down- 
stream d i rec t ion  i s  not surpr i s ing  s ince t 's highly l i k e l y  that a r c  cur- 
r en t s  are flowing throughout t h i s  region. The counterswirl  i n  f r o n t  
of the  cathode t i p  has been observed i n  the  i n i t i a l  runs, but  has not been 
d e f i n i t e l y  es tab l i shed  s ince axial symmetry has not  ye t  been checked there .  
However, there  could be volume forces  i n . t h e  counterswirl  d i r ec t ion  i n  t h a t  
region, due t o  an axial current  and the  r a d i a l  magnetic field component. 
The symmetry of t he  flow a t  t h e  e x i t  plane has been measured and i s  very 
good. the  probe body ex- The probe w a s  i n j ec t ed  c l e a r  across  a diameter: 
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tending across  t h e  jet t o  make measurements on t h e  o the r  side of  t he  jet 
center l ine  did not d i s tu rb  t h e  symmetry. 

The data of Figures 8-10 were taken with the  t h r u s t e r  running i n  a 
no-spoke mode a t  312 amp, 28 vol t ,  25 mg/sec of  argon, and B, = 1120 gauss. 
The t h r u s t e r  was very stable. 
planned when t h e  t h r u s t e r . a b m p t l y  s h i f t e d  in to  the  mode pa t t e rn  of Figure 5 ,  
where at  those parameters, it i s  c l ea r ly  i n  a spoke mode. 
occurrence taught us about mode t r a n s i t i o n  thresholds and i n i t i a t e d  a search 
f o r  a N t o  S t &s i t ion  region of a more permanent character.  

The experiment was terminated earlier than 

This f r u s t r a t i n g  

Following 
Schneidermant 1E 1 the cathode pos i t ion  was then changed. 

2. Cathode a t  o ther  Posi t ions 

The cathode w a s  moved upstream t o  z = 3.8 cm. N o  grossly stable mode 
w a s  found over the  parameter range l isted previously. Furthermore, t he  
anode blackened, and some insu la tor  chipped away. The insu la tor  w a s  cu t  
back f a r t h e r  from the  cathode t i p  for the 'next  run, bu t  t he  s i t u a t i o n  did 
not improve. 

The cathode w a s  then moved downstream t o  z = 2.54 em. I n  t h i s  con- 
f igurat ion,  t he  engine has exce l len t  s t a b i l i t y .  The spoke onset  regions are 
very narrow, and have not drifted during 30 hours of running. The s t a b i l i t y  
test  period w a s  car r ied  out  over several days and included many engine 
restarts under d i f f e ren t  conditions. 
repeatable t o  a f e w  percent. 
f o r  detailed work on the  differences of  t he  spoke and no-spoke modes. 

The experimental measurements are 
This s t a b i l i t y  and r epea tab i l i t y  i s  e s s e n t i a l  

The parameters f o r  spoke onset  are given i n  Figure 11. I n  cont ras t  t o  
the data i n  Figures 5 and 6 with t h e  cathode upstream, the  magnetic f ie ld  
values f o r  spoke onset are somewhat smaller. 
engine f luctuat ions,  even i n  the  t r a n s i t i o n  region. The mode t r a n s i t i o n  
occurs smoothly. The voltage and anode l o s s  change continuously i n  t h e  
manner shown previously f o r  the  crossed data of Figure 6 and have near ly  
the  same values. 

Also, now there  are no gross  

3 .  Effec ts  of Anode Segments and Geometry 

Un t i l  recently,  we  have used e i t h e r  a s o l i d  anode or an anode with 
No s ign i f i can t  e f f e c t  of  the segmentation has been observed. four  segments. 

With the  anode of  th ree  segments, shown i n  Figure 2, it i s  possible  t o  have 
a very sens i t i ve  test of  t h i s  conclusion. 
signals,  one can observe the  t i m e  h i s to ry  of t h e  current  spoke t r a n s f e r  
across the  gap between segments 16 and 20. If no segment e f f e c t  exists, 
then the  sum of t h e  Rogowski s igna ls  from 16 and 20 should be iden t i ca l  
t o  the  s igna l  from segment 9, which has no such gap. 
e f f e c t  o f  the  segmentation. 

By use of  t h e  Rogowski c o i l  

Results again show no 
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Since t h e  Rogowski c o i l  de tec t ion  eff ic iency i s  frequency dependent, and 
i s  zero f o r  d.c. currents,  it is  important t o  a l s o  use d.c. shunts i n  these  
experiments. It has been found t h a t  t he  spoke frequencies are a l l  near 
100 kHz, the  value f o r  which t h e  Rogowski c o i l s  were designed. The d.c. 
values of t he  current  t o  t h e  anode segments show an axisymmetric flow t o  
the  segments i n  e i t h e r  t h e  spoke or no-spoke modes. 

The general  features o t e experimental r e s u l t s  i n  t h i s  repor t  have 
a l s o  been found by Dr .  Shihfl3f who operates  a t h r u s t e r  with segments cu t  
t raverse ly  t o  the  th rus t e r  axis. 

A t  t he  end of t h i s  contract ,  an anode w a s  used b r i e f l y  which w a s  a 

Again, spoke onsets were found i n  t h e  same 
r i g h t  cyl inder  with i t s  base exposed t o  the  discharge, i.e., e f f ec t ive ly  
a nozzle of  90' half-angle. 
parameter regions o f  Figures 5, 6 and 11. Thus it seems t h a t  anode geo- 
metry is  not a sens i t i ve  factor .  

N. CONCLUSIONS 

A continuous d.c. MPD engine has been run, very stably,  with or with- 
out  the  presence of a ro t a t ing  e l e c t r i c  current  spoke. 
mode, the azimuthal s w i r l  and a x i a l  flow of ions within the  t h r u s t e r  have 
been determined by measuring the  ion sa tura t ion  current  t o  a double planar  
Langmuir probe. The flow has no t i m e  dependence and a t  the  nozzle ex i t  
plane i s  axisymmetric. Downstream from the cathode, t h e  a x i a l  flow in-  
creases and t h e  s w i r l  decreases. The charge flow across  the  nozzle e x i t  
plane corresponds t o  59% ionizat ion of the  propel lant  atom flow, i f  s ing le  
ionizat ion i s  assumed. 

I n  the  no-spoke 

If the th rus t e r  has a ro t a t ing  current  spoke, then the  ion flow i s  
modulated a t  the  spoke frequency. I n i t i a l  r e s u l t s  suggest t h a t  a strong 
plasma spoke then ex is t s ,  c losely coupled s p a t i a l l y  t o  the  current  spoke. 

arc .  
d measurements have been made on such a plasma spoke i n  a pulsed 

Quant i ta t ive  in t e rp re t a t ion  of the magnitude of  t h e  ion sa tura t ion  
current  t o  the  Langmuir probe i n  such MPD a r c s  depends upon t h e  r a t i o  of  
p a r t i c l e  mean free paths t o  the  probe dimensions. The r a t i o  i s  not ex- 
pected t o  a f f e c t  t h e  iden t i f i ca t ion  of  t he  s w i r l  angle, because of t h e  
requirement tha t  t he  probe electrodes,  facing opposite direct ions,  must 
measure iden t i ca l  cur ren ts  when t h e  faces  are p a r a l l e l  t o  t he  flow. The 
re la t ionship  of t he  mfp t o  probe s i z e  has not been determined here. 
perhaps c o l l i s i o n a l  e f f e c t s  are minor, s ince the  probe response versus 
angular o r i en ta t ion  i n  Figure 8 seems reasonab 

problems with the  data. 

Y e t ,  

I n  addition, t h e  mfp 
appears t o  be l a rge  enough i n  a similar device t o  avoid in t e rp re t ive  
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Because of t h e  modulation of the  ion flow, i n  the  spoke mode, t h e  
negatively biased probe serves as a good spoke de tec tor .  
true if the  probe is  within the  thrus te r .  Combined with the  anode segment 
current  measurements, t he  degree of  azimuthal uniformity i s  then b t t e r  
established. The r e s u l t s  here, then, confirm those of  Malliaris(bT and 
serve t o  remove some reservat ions about diagnost ic  techniques which he 
discussed. If a spoke exists, then the  plasma flow is  modulated a t  a l l  
places  i n  t h e  engine and the  exhaust. 

This is  espec ia l ly  

Parameter thresholds exist f o r  t r igger ing  t h r u s t e r  mode changes from 
spoke t o  no spoke. 
liable t r i g g e r  and small changes o f  10 t o  2% i n  i t s  s t rength  are s u f f i -  
c ien t .  Transi t ions can occur smoothly or with engine f luctuat ions.  I n  the  
lat ter case, an abrupt voltage mode change a l so  occurs. 
are s l i g h t l y  better on the  spoke side of  t h e  t r a n s i t i o n  region. 

The ex terna l  magnetic field seems t o  be the  most re- 

Thermal e f f i c i enc ie s  

Each important r e s u l t  or fea ture  found i n  a t h r u s t e r  with a segmented 
anode has always been checked and found i n  an i d e n t i c a l  t h rus t e r  with a 
s o l i d  anode. No s ign i f i can t  e f f e c t  of t h e  segmentation has been found. 

Work i n  progress i s  planned t o  map the  plasma flow i n  both the  spoke 
O f  p a r t i c u l a r  i n t e r e s t  i s  t h e  correlat ion.  of t he  and no-spoke modes. 

t h rus t e r  mode with the  voltage drop across  the  anode sheath. 
most i n t e re s t ing  t o  do t h i s  on both sides of  a mode t r a n s i t i o n  region-  
t h a t  i s  narrow. 
t r a n s i t i o n  parameter region t o  wander somewhat. However, by adjust ing the  
cathode posi t ion,  it has been found t h a t  t he  t h r u s t e r  runs very s t ab ly  and 
its operating fea tures  are highly repeatable. 

It would seem 

This goal  w a s  i n i t i a l l y  hampered by a tendency f o r  t he  

The existence of a narrow, repeatable t r a n s i t i o n  region is  ideal f o r  
t he  assessment of the  s ign i f icant  differences between the  spoke and no-spoke 
modes. 
much during a mode change, a t  constant are current,  brought about by a 
change i n  the magnetic field: the  a rc  voltage, t h e  power l o s s  t o  t h e  anode, 
or the  average azimuthal plasma flow. 

So far w e  have observed that the  following parameters do not change 
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APPENDIX I 

A descr ip t ion  i s  given here of the  mechanical apparatus f o r  t he  quick 
The main fea tures  of the  in se r t ion  of a Langmuir probe i n t o  t h e  thrus te r .  

apparatus are shown i n  Figure 12. The rear view i s  shown i n  Figure 13 where 
the apparatus i s  on the  tank mount located below the  th rus t e r .  
i s  within the  th rus t e r .  
Figure 2. 

The probe 
A close-up of t he  t h r u s t e r  region i s  shown i n  

The probe e lec t rodes  a r e  held by an alumina oxide s t e m  which i s  at- 
tached t o  a s t a i n l e s s  steel shaf t .  The probe i s  normally withdrawn from 
the  t h r u s t e r  and i s  at rest i n  a water-cooled housing. I n  operation, the  
sha f t  i s  driven by a l eve r  arm which i s  moved by a pneumatic actuator .  
The sha f t  i s  guided i n  a s t r a i g h t  l i n e  by t e f l o n  bearings.  The sha f t  has 
several  attachments f o r  t h e  purpose of pos i t ion  control, pos i t ion  readout, 
and scope t r igger ing .  The various p a r t s  a r e  described next. 

1. Pneumatic Actuator 

A Hannifir s e r i e s  "S" cyl inder  w a s  modified t o  give t h e  des i red  stroke. 

Figure 12 shows the  cyl inder  i n  the  normal posi t ion.  
It i s  control led by four solenoid valves as seen below. The working gas i s  
nitrogen a t  60 psi .  
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2. Lever 

The turn-around-time o f  t he  ac tua tor  i s  too long. Therefore, t h e  con- 

The ac tua tor  and lever disengage before t h e  probe reaches m a x i -  
t a c t  between the  ac tua tor  and the  l eve r  arm i s  designed t o  a c t  as a sear 
mechanism. 
mum inser t ion.  
stroke.  
hold the  probe. 
own axis. 

I n e r t i a  c a r r i e s  t h e  probe the  last f e w  millimeters of the  
The r i g h t  end of the l eve r  cons i s t s  of two p a r a l l e l  rails which 

This construction allows the  probe t o  be ro ta ted  about i t s  

3 .  Stop Wheel 

The probe t r a v e l  i s  stopped and reversed by the  s top wheel. The probe 
shaft passes through an annular s l o t  near t h e  circumference. 
circumference, the s l o t  depth changes i n  steps,  thus providing seven probe 
stops, two millimeters apart ,  along the  probe ax is .  The probe shaf t  i s  
enlarged at  one place t o  engage the  wheel. The s top  wheel determines the 
radial pos i t ion  of  t he  probe within t h e  th rus t e r .  It i s  v isua l ly  set and 
read from outs ide the  chamber. The probe i s  returned t o  i t s  normal posi-  
t i o n  by springs.  

Around the 

4. Probe Angle Control 

The angular pos i t ion  of t he  probe i s  control led by spl ine gears ro ta ted  
by a motor-driven worm gear.  
keeps the  probe on any angle se t t i ng  by s l id ing  along the  long spl ine gear. 

A shor t  sp l ine  gear  a t tached t o  t h e  probe shaft 

5 .  Probe Angle Indicator  

T h i s  shows the  angle of the probe electrodes w i t h  respect  t o  the  
th rus t e r  axis, and i s  read v i sua l ly  from the  outside of  t he  vacuum chamber. 

r 

0 .  Apparatus Mount 

The mount is  adjustable  i n  three  mutually perpendicular direct ions,  one 
of which i s  p a r a l l e l  t o  the  thruster axis .  The base of t h e  mount i s  an 
e l e c t r i c a l  insu la tor .  

7. Material 

Nonmagnetic materials were used throughout. Platinum was used f o r  the 
Langmuir probe electrodes.  
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Figure 12. Probe inser t ion  apparatus. 
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Figure 13. Experimental set up, 
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